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SUMMARY
The degree to which evolution is predictable is a fundamental question in biology. Previous attempts to pre-
dict the evolution of protein sequences have been limited to specific proteins and to small changes, such as
single-residue mutations. Here, we demonstrate that by using a protein language model to predict the local
evolution within protein families, we recover a dynamic ‘‘vector field’’ of protein evolution that we call evolu-
tionary velocity (evo-velocity). Evo-velocity generalizes to evolution over vastly different timescales, from
viral proteins evolving over years to eukaryotic proteins evolving over geologic eons, and can predict the
evolutionary dynamics of proteins that were not used to develop the original model. Evo-velocity also yields
new evolutionary insights by predicting strategies of viral-host immune escape, resolving conflicting theories
on the evolution of serpins, and revealing a key role of horizontal gene transfer in the evolution of eukaryotic
glycolysis.
INTRODUCTION

A longstanding open question in biology is whether evolution is

predictable or fundamentally random (Gould, 1990; L€assig

et al., 2017; Morris, 2003; de Visser and Krug, 2014). Theoreti-

cally, learning the rules that constrain evolution could enable

some amount of evolutionary predictability. For example,

mutating a protein site to a new residue that is biochemically

incompatible with other residues could destabilize the protein,

whereas a different new residue could instead improve stability

and enable new types of mutations. However, biological

complexity (for example, due to the combinatorial complexity

of interactions among protein residues) makes learning these

rules a considerable challenge (Bloom et al., 2006; Gong et al.,

2013; Smith, 1970; Wright, 1932).

Promising advances in machine learning have improved the

ability of a class of algorithms called language models to learn

the rules that govern how amino acids can appear together to

form a protein sequence (Alley et al., 2019; Bepler and Berger,

2019, 2021; Hie et al., 2021; Hsu et al., 2022; Rao et al., 2019;

Rives et al., 2021; Madani et al., 2021). However, language

models have been applied only to modeling local evolution,

such as single-residue mutations, rather than more complex

changes that occur over long evolutionary trajectories.

Here, we show how the evolutionary predictability enabled by a

single, large language model (Box 1) provides a new method for

recovering the dynamic trajectories of protein evolution that we
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refer to as ‘‘evolutionary velocity,’’ or ‘‘evo-velocity.’’ Evo-velocity

is conceptually inspired by work in theoretical biology that under-

stands evolution as a path that traverses a ‘‘fitness landscape’’

based on locally optimal decisions (Smith, 1970; Wright, 1932);

although inspired by traditional fitness landscapes, evo-velocity

is a distinct concept, as explained in the first paragraph of the dis-

cussion. Our key conceptual advance is that by learning the rules

underlying local evolution, we can construct a global evolutionary

‘‘vector field’’ that we show can (1) predict the root (or potentially

multiple roots) of observed evolutionary trajectories, (2) order pro-

tein sequences in evolutionary time, and (3) identify themutational

strategies that drive these trajectories. By predicting the order of

biological sequences, evo-velocity has diverse applications that

range from tracing the progression of viral outbreaks to under-

standing the history of life on earth.

In contrast to previousmethods for predicting evolution, which

assume protein-specific evolutionary models (for example,

training a language model specific to a protein family) (Hie

et al., 2021; Riesselman et al., 2018), we use a single language

model to make all of our predictions across a diversity of pro-

teins. We show that evo-velocity based on a single model gener-

alizes to protein evolution across a breadth of organisms and

evolutionary timescales—from the evolution of viral proteins

over the course of years to the evolution of enzymes across all

three domains of life—suggesting that algorithms can learn a

common set of evolutionary rules, thereby expanding our ability

to understand and predict protein evolution.
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Box 1. Glossary

d Languagemodel: a probability distribution over a sequence of tokens, for example, a sequence of English words or a sequence of

amino-acid residues. Neural networks can implement a language model by outputting a probability value given an input

sequence.

d Masked language model: a language model that predicts the identity of one or more masked tokens given all other tokens in the

sequence. To train a neural network based on a masked language modeling objective, a subset of tokens in a sequence are

masked and the language model is trained to predict the masked tokens based on the unmasked tokens.

d Language model pseudolikelihood: a score that approximates the likelihood of a full sequence but is computationally efficient to

learn and compute. For example, the conditional likelihoods of single tokens learned by amasked languagemodel can be used to

efficiently compute a pseudolikelihood value for the full sequence; however, the joint likelihood of all tokens in the sequence is not

directly learned by the masked language model.

d Sequence embedding: a computational representation of a sequence as a vector in a (typically binary or real-valued)

vector space.

d Pseudotime: orders the elements of a set according to an inferred, one-dimensional value. When these elements correspond to

the nodes in a graph, diffusion pseudotime is an algorithm that computes pseudotime based on the geodesic distance from a

single, given ‘‘root’’ node.

d Fitness landscape: a comprehensive set of genotypes and their corresponding fitness values, where fitness is defined as a mea-

sure of the desirability of a given genotype. Fitness landscapes are often visualized by summarizing sequence variation in a one-

or two-dimensional space and plotting fitness as the corresponding ‘‘height’’ over the space.

d Epistasis: a phenomenon where the effect of one mutation is dependent on the value of a different mutation. In statistical models

of evolution where each genetic locus corresponds to a random variable, an epistatic model can account for statistical depen-

dence among loci, whereas a non-epistatic model assumes independence among loci.

d Phylogenetic tree: a graph that describes evolutionary relationships in which nodes correspond to biological entities, edges con-

nect evolutionarily related nodes, and the overall graph is a tree (there are no cycles). In a rooted phylogenetic tree, each edge is

directed from an ancestral node to a descendant node, and each node is connected to a single ancestor expect for a single

‘‘root’’ node.

d Sequence similarity network: a generalization of a phylogenetic tree in which nodes correspond to biological sequences and

edges connect evolutionarily related nodes but where cycles in the graph are allowed.
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RESULTS

Overview of language models and evo-velocity
Our approach is conceptually inspired by the premise that evo-

lution occurs through local changes that preserve or enhance

evolutionary fitness (discussion) (Smith, 1970; Wright, 1932). In

theory, predicting local evolution should, therefore, provide

insight into global evolution as well (Figure 1A). To predict the

local rules of evolution, we leverage protein language models,

which learn the likelihood that a particular amino-acid residue

appears within a given sequence context (Figure 1B). When

trained on large corpuses of natural sequences, this language

model likelihood is a strong correlate of the effects of mutations

on laboratory measurements of protein fitness. For example, the

ESM-1b (evolutionary scale modeling) language model (Rives

et al., 2021), trained on �27 million sequences in the UniRef50

database (Suzek et al., 2007; Table S1), can predict the effects

of single-residue mutations as quantified by deep mutational

scanning (DMS) of diverse proteins (Livesey and Marsh, 2020)

(Figures 1C and S1; Data S1; STAR Methods). This correlation

is comparable with that of a state-of-the-art mutational effect

predictor (Riesselman et al., 2018) that was specially trained

on sequence variation within individual protein families (Fig-

ure 1C); in contrast, ESM-1b is trained on a dataset that removes

most intra-family sequence variation (Suzek et al., 2007). This

broad predictive performance suggests that ESM-1b does not

overfit to a single definition of fitness but learns general evolu-

tionary patterns.
Our key hypothesis is that the likelihoods learned by these

large-scale protein language models can be used to provide a

notion of directionality within evolutionary trajectories. In our

approach, which we call evo-velocity, we first model the ‘‘land-

scape’’ or the ‘‘manifold’’ (Yu et al., 2015) of sequence variation

by constructing a sequence similarity network (Mccandlish,

2011) in which each node represents a protein sequence and

edges connect similar sequences (Figure 1D). We quantify the

sequence similarity as the Euclidean distance in language

model-embedding space (Box 1), which can encode complex

functional relationships (Bepler and Berger, 2019; Hie et al.,

2021), and we construct the network by connecting a sequence

to its k-nearest neighbors (KNN), which has been useful in

modeling biological landscapes in many genomics applications

(Becht et al., 2019; Hie et al., 2020; Wolf et al., 2018).

Then, language models assign a direction to each edge in the

KNN network based on the change in the language model pseu-

dolikelihood (Box 1) between the two sequences in that edge

(Figure 1D). Intuitively, the local predictions of language models

assign a ‘‘velocity’’ to pairs of sequences in the network that we

assemble into an evolutionary ‘‘vector field’’ (La Manno et al.,

2018). In this paper, we implement evo-velocity with a single

masked language model, ESM-1b, but our framework can

readily generalize to other implementations as well (discussion).

We can then determine whether there are consistent patterns

in the ‘‘flow’’ of evolution across the global network (Figure 1D),

which includes visualizing the trajectory and velocity in two

dimensions (McInnes and Healy, 2018) and identifying the
Cell Systems 13, 274–285, April 20, 2022 275
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Figure 1. Constructing an evolutionary vector field by predicting local evolution

(A) A global evolutionary landscape can be approximated by a composition of local evolutionary predictions. In this cartoon, each circle corresponds to a

sequence, where the proximity along the horizontal direction indicates sequence similarity and the height along the vertical axis represents ‘‘fitness.’’

(B) To make these predictions, we can leverage language models that learn the likelihood of an amino acid occurring within some sequence context.

(C) The pseudolikelihoods learned by language models correlate with the DMS-based measurements of various notions of protein fitness, without the language

models being explicitly trained on these data (STAR Methods). Although DeepSequence trains a separate model for each protein family, ESM-1b and TAPE are

general languagemodels each trained on a single, non-redundant dataset. Circles indicate correlations of different DMS profiles within the same study (Data S1);

bar height indicates the mean across these profiles.

(D) Evo-velocity uses language model likelihoods to assign a directionality to edges in a sequence similarity network, enabling downstream analysis, such as

predicting root nodes, ordering nodes in pseudotime, and identifying the mutations associated with the largest changes in evo-velocity (STAR Methods).
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mutations that correlate with the direction of evo-velocity.

We can also use the language-model-inferred directionality

to determine the roots of a diffusion process defined on the

evo-velocity-weighted network. Once we have these roots, we

can then place all sequences along a one-dimensional order,

which we call diffusion pseudotime (Box 1), based on the dis-

tance along the trajectory from the estimated roots (Haghverdi

et al., 2016). We hypothesize that pseudotemporal order recon-

structs evolutionary order. We have provided a detailed method-

ology in STAR Methods.

Evo-velocity of influenza A nucleoprotein
As initial validation, we used evo-velocity to reconstruct the evo-

lution of the nucleoprotein (NP) of influenza A virus. NP is an

excellent evolutionary test case because its sequence evolution

is densely sampled through influenza viral surveillance, and it un-

dergoes natural selection in the formof host immunepressurebut

is less mutable than other viral proteins with a mutation rate of

about one amino-acid residue per year (Gong et al., 2013).

We obtained 3,304 complete NP sequences sampled from hu-

man hosts, constructed the sequence similarity network, and

computed evo-velocity scores. When we visualized this network

in two dimensions (McInnes and Healy, 2018), we observed

phylogenetic structure corresponding to both the sampling year

and influenza subtype (Figures 2A and S2A). The evo-velocity

flow through the network (STAR Methods) corresponded to the

known temporal evolution of NP (Figure 2A).

Because visualizing this flow in two dimensions can be prone

to information loss or distortion through dimensionality reduction

(LaManno et al., 2018), we sought to further quantify the relation-
276 Cell Systems 13, 274–285, April 20, 2022
ship between evo-velocity and NP evolution. We first verified

that, on average, the evo-velocity scores of the individual

network edges increase along with greater differences in sam-

pling time (Figure S2B). We then quantified global evo-velocity

patterns using a diffusion analysis to estimate the network’s

roots (STAR Methods). We observed that the evo-velocity-in-

ferred root sequences corresponded to the main species-cross-

over events in influenza history (Figure 2B), suggesting that our

analysis accurately inferred the evolutionary origins of NP as

observed in human hosts. We then used these roots to order se-

quences according to evo-velocity pseudotime (STAR Methods)

and observed a significant correlation between the pseudotime

and known sampling time (Spearman r = 0.49, two-sided t-distri-

bution p = 43 10�197) (Figure 2C). We also observed that a well-

characterized phylogenetic path of NP (Gong et al., 2013)

progressed, on average, in the same direction as the evo-veloc-

ity gradient (Figures 2A and 2C) and agreed with simulated paths

generated by random walks across our evo-velocity landscape

(Figure 2D; STAR Methods). We emphasize that we did not pro-

vide our algorithm with any explicit knowledge of the known

sampling time.

When comparing our evo-velocity landscape with a standard

phylogenetic tree, we observed that evo-velocity can model

more complex evolutionary relationships. For example, a

midpoint-rooted phylogenetic tree of all NP sequences (STAR

Methods) visually suggests that the H5N1- and H7N9-subtype

sequences branch off from H1N1 (Figure 2E). Instead, evo-ve-

locity predicts an independent origin of H5N1/H7N9 (Figures

2B and 2F), consistent with the epidemiological data indicating

a recent zoonotic crossover of H5 and H7 avian influenza
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Figure 2. Evo-velocity of influenza A nucleoprotein

(A) The landscape of NP sequences (obtained from the Influenza Research Database, https://www.fludb.org/), represented as a KNN sequence similarity

network, shows structure corresponding to the temporal evolution of various subtypes of influenza (Figure S2A); gray lines indicate network edges. Overlaying

evo-velocity on the visualization as a streamplot shows a visual correlation between the flowof evo-velocity and known sampling time. A known phylogenetic path

(orange circles) (Gong et al., 2013) starting with Aichi/1968 and ending with Brisbane/2007 moves in the direction of evo-velocity.

(B) Using the evo-velocity directionality to predict roots reveals four main root regions corresponding to the beginnings of different influenza pandemic events

throughout history.

(C) Ordering sequences in pseudotime and visualizing pseudotime values in a two-dimensional contour plot shows pseudotime increasing in the direction of evo-

velocity, which is visualized here as a two-dimensional field of evo-velocity vectors; contours correspond to pseudotime. Pseudotime and known sampling year

have a Spearman correlation of 0.49 (two-sided t-distribution p = 4 3 10�197).

(D) On average, the Gong et al. path visualized in (A) and (C) has positive changes in evo-velocity scores over time and largely resembles simulated paths

generated by performing random walks across our evo-velocity landscape (STAR Methods). A portion of the Gong et al. path with negative evo-velocity scores

may be due to ordering ambiguities that are better resolved by considering evo-velocity.

(E) A maximum-likelihood, midpoint-rooted phylogenetic tree of all NP sequences conveys that the H5N1 and H7N9 subtype sequences branch off from H1N1

sequences.

(F) In contrast, evo-velocity predicts an independent origin of H5N1/H7N9 influenza (Sutton, 2018) (see B) and sequence similarity with H1N1 due to convergent

evolution.

(G) The M374I mutation to NP has the second strongest magnitude change in evo-velocity (STAR Methods) and is located in the most well-studied human T cell

epitope on NP (Table S2).
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(Sutton, 2018). Evo-velocity also predicts that the observed sim-

ilarity of H5N1/H7N9 and H1N1 NP sequences sampled in hu-

man hosts is due to convergent evolution (Figure 2F), which is

challenging to explicitly represent using a phylogenetic tree.

We next sought to use our evo-velocity landscape to provide

new insight into NP evolution. We, therefore, identified the muta-

tions that corresponded to the strongest changes in the evo-ve-

locity scores (STAR Methods). Of the top five such mutations in

NP, all are present in experimentally validated human T cell epi-

topes, and one of these mutations, M374I, is located in the most

well-characterized linear NP epitope in the Immune Epitope

Research Database (IEDB) (Vita et al., 2015; Figures 2G and

S2C; Table S2). Moreover, all five mutations involve a single-

nucleotide substitution resulting in a methionine that changed

to a hydrophobic or polar-uncharged amino-acid residue, sug-

gesting a possible T cell escape strategy that has recurred in

multiple NP epitopes throughout history (Figures 2G and S2C;

Table S2).

All NP sequences in our analysis belong to a single UniRef50

sequence cluster (Suzek et al., 2007) for which the representative

sequence is from a 1934 H1N1 virus (Figure S2D). We found that

a similarity to sequences present in UniRef50, the ESM-1b

training dataset, does not explain evo-velocity pseudotime

(Table S3; STAR Methods) and that evo-velocity pseudotime

was not explained by variation in sequence length (Table S4).

We also found that computing evo-velocity scores with a smaller

language model, the TAPE (tasks assessing protein embed-

dings) transformer model (Rao et al., 2019), trained with a

different model architecture on the Pfam database of protein

families (El-Gebali et al., 2019), closely reproduced the ESM-

1b evo-velocity results (Spearman r = 0.93, two-sided t-distribu-

tion p < 1 3 10�308) (Tables S5 and S6; Figures S2E and S2F).

Together, these results suggest that our evo-velocity results

are not explained by a trivial language model preference to

UniRef50.

Evo-velocity was, therefore, able to reconstruct the direction

of NP evolution without any explicit knowledge of influenza sub-

type or sampling time. Moreover, we found that the generic rules

learned by large language models were sufficient to predict the

evolution of a specific protein.

Evo-velocity of viral proteins
Given the promising results for NP,wewere interested in seeing if

evo-velocity could generalize to other viral proteins as well. We

next analyzed the evolution of influenza A hemagglutinin (HA), a

more variable protein on the viral surface responsible for viral-

host membrane fusion (Eckert and Kim, 2001; Harrison, 2008).

The HA sequence landscape contains two main trajectories,

one beginning in 1918 and the other beginning in 2009

(Figure 3A). We observed that the 2009-rooted trajectory first be-

comes more similar (i.e., more proximal in sequence-embedding

space) to the 1918-pandemic HA before subsequent divergence

(Figure 3A), consistent with the convergent antigenic similarity

between 1918 and 2009 pandemic influenza (Wei et al., 2010;

Xu et al., 2010). As with NP, an evo-velocity analysis of 8,115

HA sequences recovered roots corresponding to the known ori-

gins of HA H1 in humans from the 1918 and 2009 H1N1 pan-

demics, and evo-velocity pseudotime was strongly correlated

with sampling date (Spearman r = 0.51, two-sided t-distribution
278 Cell Systems 13, 274–285, April 20, 2022
p < 1 3 10�308) (Figures 3A and 3B). Despite the sequence vari-

ability of HA being higher than that of NP, evo-velocity was still

able to reconstruct the trajectory and directionality of HA

evolution.

As with NP, our HA pseudotime results were not explained by

sequence similarity to the training dataset (Figure S3A; Table S3).

We were also able to use TAPE-based velocities to identify

similar root regions in the post-2009 pandemic trajectory, but

TAPE had a more difficult time identifying the 1918 sequences

as oldest, most likely due to TAPE’s smaller model size and

less capable mutational effect predictions (Figures 1C and

S3B–S3D; Table S5).

We next analyzed the evolution of the group-specific antigen

(Gag) polyprotein of human immunodeficiency virus type 1

(HIV-1) using 18,018 sequences. Visualizing the sequence sim-

ilarity network overlaid with evo-velocity reveals a flow corre-

sponding to the known subtype branching history of HIV-1,

with circulating recombinant forms (for example, subtypes AE

and BC) branching off of the main subtypes and occurring later

in pseudotime (Figures 3C and 3D). HIV-1 Gag sequences also

had strong positive velocities compared with phylogenetically

similar Gag sequences from chimpanzee simian immunodefi-

ciency virus (SIVcpz) (Figure S3E), consistent with a SIVcpz

origin preceding the evolution of pandemic HIV-1 (Sharp and

Hahn, 2011). We observed weaker correlation between pseu-

dotime and sampling date (Spearman r = 0.12, two-sided t-dis-

tribution p = 6 3 10�49) (Figure S3F) compared with influenza

proteins, consistent with weak population-level immune pres-

sure on Gag evolution. Gag pseudotime was not explained

by sequence similarity to UniRef50 (Table S3) and was also

reproducible using TAPE-based velocities (Figure S3G; Ta-

ble S5).

We next applied our algorithm to analyze 75,584 sequences of

the spike glycoprotein of severe acute respiratory syndrome co-

ronavirus 2 (SARS-CoV-2) across a much shorter historical

timescale of around 21 months. The sequence similarity

network reconstructs the overall trajectory of spike evolution,

and evo-velocity analysis identifies the sequence clusters asso-

ciated with later sequences, including the B.1.1.7 (Alpha),

B.1.351 (Beta), B.1.617.1 (Kappa), B.1.617.2 (Delta), and P.1

(Gamma) variants-of-concern (Maher et al., 2022; Walensky

et al., 2021), as later in pseudotime (Figures 3E–3G). Despite a

shorter evolutionary timescale, evo-velocity pseudotime and

sampling date still had a Spearman correlation of 0.55 (two-

sided t-distribution p < 1 3 10�308). We also note that SARS-

CoV-2 spike evolution occurred outside of the temporal range

associated with both language model training datasets, and

we were also able to reproduce the results with TAPE-based

evo-velocity (Figure S3H; Table S5).

Across these four viral proteins, therefore, evo-velocity was

able to reconstruct the directionality of evolution, consistent

with the known trajectories. All of our analysis was based on a

single model that was trained without any explicit knowledge

of viral sampling date, subtype, or protein-specific sequence

variation.

Evo-velocity of eukaryotic proteins
After validating our approach with known viral trajectories, we

wanted to see if evo-velocity could generalize to longer
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and is also predicted by evo-velocity pseudotime. Two main clusters correspond to the two main pandemic trajectories of H1N1, the first beginning in the early

twentieth century and the second beginning in the early twenty-first century, with some convergence between the two trajectories consistent with the known

antigenic convergence (Wei et al., 2010; Xu et al., 2010). Pseudotime and known sampling time have a Spearman correlation of 0.51 (two-sided t-distribution p <

1 3 10�308).

(C and D) An evo-velocity streamplot of Gag evolution illustrates the branching trajectories of HIV-1 subtypes, including major subtypes, such as A, B, and C,

preceding circulating recombinant forms, such as AE and BC. Box extends from the first to third quartile with a line at themedian; whiskers extend to 1.5 times the

interquartile range, and diamonds indicate outlier points. Gag sequences were obtained from the Los Alamos National Laboratory (LANL) HIV database (https://

www.hiv.lanl.gov/).

(E–G) Variants of spike (identified using characteristic mutations, such as D614G and N501Y) that emerge in later portions of the COVID-19 pandemic are also

predicted to be later in evo-velocity pseudotime. Pseudotime and known sampling time have a Spearman correlation of 0.55 (two-sided t-distribution p <

1 3 10�308).

ll
OPEN ACCESSArticle
trajectories, such as protein evolution that spans multiple spe-

cies. Although we have access only to extant sequences, we hy-

pothesized that evo-velocitymight still provide useful orderings if

some extant sequences are closer to the ancestral sequence

than others. As an initial test case, we analyzed the globin protein

family because of its extensive phylogenetic characterization

(Pillai et al., 2020), including laboratory reconstruction of ances-

tral intermediates, that we can use to validate our model

(Figure 4A).

The landscape of 6,097 eukaryotic globin sequences forms a

branching trajectory with three major divisions corresponding

to myoglobin, alpha hemoglobin, and beta hemoglobin (Fig-

ure 4B). The predicted root region lies in the part of the landscape

closest to neuroglobin and cytoglobin (Figures 4B, S4A, and

S4B). Of the major classes of globins, neuroglobin is estimated

to be occurring earliest in pseudotime, whereas the alpha

(Hba) and beta (Hbb) subunits of hemoglobin occur last in pseu-

dotime (Figure 4C), consistent with a previous analysis of globin
phylogeny by Pillai et al. (Figure 4A). These results are also repro-

ducible when using TAPE to compute the evo-velocity scores

(Figures S4C and S4D; Table S5) and when controlling for

sequence similarity to the training dataset (Figure S4D; Table

S3; STAR Methods).

Previous work (Pillai et al., 2020) also reconstructs ancestral

globins that are confirmed to be viable oxygen binders and prog-

ress from a monomeric myoglobin/hemoglobin ancestor

(AncMH) to a dimeric alpha/beta hemoglobin ancestor (Anca/b)

to a tetramer formed by separate alpha and beta hemoglobin an-

cestors (Anca and Ancb, respectively) (Figure 4A). Consistent

with evo-velocity increasing over evolutionary time, the ESM-

1b language model likelihood, on average, increases from

AncMH to extant myoglobin and hemoglobin sequences, but

this improvement diminishes for more proximal ancestors

(Figure S4E). Together, our globin results suggest that the evo-

velocity pseudotime within a protein family can recover ordering

relationships over longer evolutionary timescales.
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Figure 4. Evo-velocity of eukaryotic proteins

(A) The maximum likelihood phylogenetic tree determined by Pillai et al. (2020) is rooted in globin X and neuroglobin with the longest branches extending to Hba

and Hbb.

(B) The landscape of globin sequences (obtained from UniProt, https://www.uniprot.org/) shows a branching trajectory with the predicted root also closest to

neuroglobin (Figure S4A).

(C) Computing pseudotime from this predicted root places Hba and Hbb as most recent in evolution, consistent with the tree of Pillai et al.

(D) The landscape of cytochrome c sequences (obtained from UniProt, https://www.uniprot.org/) shows clustering structure corresponding to the known

taxonomic labels, with the evo-velocity gradient beginning among single-celled eukaryotes and plants (Figure S5A).

(E and F) The ordering of themedian evo-velocity pseudotimes of various taxonomic labels corresponds to the evolutionary orderings in geologic time determined

by molecular clocks and the fossil record (Hedges et al., 2015). For all boxplots: box extends the from first to third quartile with a line at the median; whiskers

extend to 1.5 times the interquartile range, and diamonds indicate outlier points.
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To further test this hypothesis, we analyzed 2,128 se-

quences of cytochrome c, a well-studied protein in evolu-

tionary biology because of its high sequence conservation

among most eukaryotes (McLaughlin and Dayhoff, 1973).

When visualized, the sequence similarity network combined

with evo-velocity reflects the taxonomic diversification of the

eukaryota (Figure 4D). The ordering of the median pseudo-

times of different taxonomic classes also recapitulates their

known ordering in geologic time based on estimates from

the fossil record and molecular clocks (Hedges et al., 2015)

(Figures 4E, 4F, S5A, and S5B; Table S6). We were also able

to reproduce pseudotemporal orderings when using TAPE to

compute the evo-velocity scores (Figures S5C and S5D; Ta-

bles S5 and S6) and when controlling for sequence similarity

to the training dataset (Figure S5D; Tables S3 and S6). In total,

therefore, our analysis of well-studied eukaryotic protein fam-

ilies demonstrates that evo-velocity can generalize to protein

evolution at much longer timescales.
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Evo-velocity of ancient evolution
After validating that evo-velocity could reconstruct longer trajec-

tories of protein evolution, we applied evo-velocity to highly

conserved proteins, which often have substantial evolutionary

uncertainty (Weiss et al., 2016), to yield new insight into ancient

evolution. A protein family with considerable evolutionary uncer-

tainty is that of the serine protease inhibitors, or serpins (Irving

et al., 2002; Roberts et al., 2004). Unlike most highly conserved

families in which most of the diversity is bacterial, most of the di-

versity among serpins is eukaryotic, which we likewise observe

in our landscape of 22,737 serpin sequences (Figures 5A and

5B). This has led to conflicting theories as to whether serpins

indeed have a phylogenetic root in eukaryotes, with prokaryotes

acquiring serpins via horizontal gene transfer (HGT), or if this root

is an artifact of a greater eukaryotic diversity biasing phyloge-

netic root estimation (Irving et al., 2002; Roberts et al., 2004;

Spence et al., 2021). Since evo-velocity is not prone to the

same bias when estimating roots, we used evo-velocity to order

https://www.uniprot.org/
https://www.uniprot.org/
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Figure 5. Evo-velocity of ancient evolution

(A) The unrooted maximum likelihood phylogenetic tree of serpins shows substantially more eukaryotic than prokaryotic diversity, leading some to hypothesize a

eukaryotic root (Irving et al., 2002; Roberts et al., 2004).

(B and C) Despite lower prokaryotic diversity, evo-velocity still identifies the root of serpins within the prokaryotes, and eukaryotes are the last domain in evo-

velocity pseudotime (Figure S6A), suggesting that prokaryotic serpins were not acquired from eukaryotes via HGT (Irving et al., 2002; Roberts et al., 2004). Serpin

sequences were obtained from UniProt (https://www.uniprot.org/).

(D and E) The evo-velocity-predicted root of the enolase landscape begins in a region of archaea and some bacteria, with eukaryotic enolase having the highest

pseudotime and being directly proximal to archaeal enolase on the sequence landscape (Figures S6B, S6C, and S6F). Enolase sequences were obtained from

UniProt (https://www.uniprot.org/).

(F andG) The evo-velocity-predicted root of the PGK landscape begins in amostly bacterial regionwith some archaea, with eukaryotic PGK also being the highest

in pseudotime and directly proximal to bacterial PGK (Figures S6D, S6E, and S6G). PGK sequences were obtained from UniProt (https://www.uniprot.org/).

(H) The sequence landscapes and evo-velocity-predicted roots suggest that the component enzymes of eukaryotic glycolysis were acquired through different

evolutionary paths via HGT; figure adapted from Figure 1 ofWeiss et al. (2016). For all boxplots, box extends from the first to third quartile with a line at themedian,

whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points.
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serpin sequences in pseudotime and found that the main pre-

dicted root region was located among the prokaryotes (Figures

5B, 5C, and S6A). These results, along with the uncertain mech-

anism of eukaryotic-to-prokaryotic HGT (Spence et al., 2021),

provide strong evidence that serpin evolution follows a more ca-

nonical trajectory. The evo-velocity landscape of serpin evolu-

tion also contains a class of viral serpins that are predicted to

have evolved from eukaryotic serpins (Figure 5B), which is

consistent with the viral repurposing of mammalian host serpins

as previously hypothesized (Chen et al., 2011).

We next analyzed two of the most conserved glycolytic en-

zymes, enolase and phosphoglycerate kinase (PGK) (Piast

et al., 2005; Potter and Fothergill-Gilmore, 1993; Rojas-Pirela

et al., 2020). The landscape of 31,901 sequences from the
enolase family shows a clear evo-velocity-predicted root region

located in bacterial and archaeal sequences (Figures 5D, S6B,

and S6C). Archaea are also oldest in pseudotime and eukaryota

are newest, with bacteria showing considerable pseudotempo-

ral variation (Figures 5E and S6C). The landscape of 30,455

PGK sequences has a similar origin in a region with bacterial

and archaeal sequences (Figures 5F, S6D, and S6E), although

with more pseudotemporal variation among archaeal PGK (Fig-

ures 5G and S6E).

The largest difference between the enolase and PGK land-

scapes lies in the location of eukaryota: although both land-

scapes place eukaryota as higher in pseudotime, eukaryotic

enolase sequences branch off of archaeal enolase but eukary-

otic PGK sequences branch off of bacterial PGK (Figures 5D
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Figure 6. Evo-velocity benchmarks

(A) Metrics quantifying predicted evolutionary order were computed for the model based on ESM-1b embeddings and velocities (Base); velocities instead

computed by TAPE, blocks of amino acid substitution matrix-62 (BLOSUM62), Jones-Taylor-Thornton (JTT), or Whelan and Goldman (WAG) evolutionary

models; embeddings based on a one-hot binary encoding (one-hot); a sequence landscape with randomly assigned edges (Rand. KNN); velocities computed by

randomly initialized ESM-1b (Rand. velo.); or unit velocities (STAR Methods).

(B and C) We also computed the same metrics after applying the base model to sequence landscapes that were downsampled to the percentage of the original

dataset indicated on the horizontal axis, repeating across three random seeds. Downsampling was either done uniformly (B) or weighted to preferentially remove

older sequences (C). In all plots, metrics based on correlation (Spearman r) or separation (area under the receiver-operating characteristic curve [AUROC]) were

scaled to occupy the same vertical axis. Black horizontal lines indicate the mean within each category.
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and 5F); similar patterns were also observed when visualizing the

unrooted phylogenetic trees of both proteins (Figures S6F and

S6G). These results suggest an archaeal origin of eukaryotic

enolase and a bacterial origin of eukaryotic PGK (Figure 5H)

and are consistent with HGT contributing to amixture of archaeal

and bacterial genes in the last eukaryotic common ancestor

(Weiss et al., 2016). These results are also consistent with a

component-wise evolution of glycolysis (Potter and Fothergill-

Gilmore, 1993), rather than the pathway being inherited in totality

from a single organism.

In all the three highly conserved proteins that we tested, we

were able to reproduce evo-velocity pseudotime even when

explicitly controlling for sequence similarity to the training data-

set (Figures S6A and S6H; Tables S3 and S6) and when using

TAPE to compute the evo-velocity scores (Figures S6A and

S6H; Tables S5 and S6). The variability in sequence length did

not explain evo-velocity pseudotime (Table S4). Moreover, the

direction of the evo-velocity gradient is not explained by a trivial

training set bias toward eukaryotes, as most of the sequences in

UniRef50 are bacterial (Table S1), and we emphasize that no

explicit taxonomic information was provided to our algorithm.

Rather, our results suggest that evo-velocity can provide insight

into evolution at the longest evolutionary timescales.

Evo-velocity benchmarks
Given the ability of evo-velocity to predict the directionality of

evolution, we wanted to assess how the individual components

of our algorithm contribute to overall performance. We per-

formed control experiments in which we implemented sequence

representation, KNN network construction, or velocity score

computation with a simpler alternative (STAR Methods). We
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found that our base model, using ESM-1b embeddings and ve-

locity scores, consistently outperformed all benchmark methods

(Figure 6; Table S6; STAR Methods).

A notable control experiment demonstrated that velocities

based on a JTT amino-acid substitution matrix (Jones et al.,

1992), a non-epistatic evolutionary model, still had reasonable

overall performance (Figure 6A; Table S6). This experiment also

helpedus reasonabout thecontributionsofmodelingdrift (via sub-

stitution matrices that consider the similarity of two residues) and,

additionally, epistasis (via masked language models that use the

entire sequence context to predict mutational likelihood). For pro-

teins under weak selection, such as HIV-1 Gag, both JTT and the

epistatic models (i.e., ESM-1b and TAPE) have comparable pre-

dictive ability (Table S6); however, for proteins under strong selec-

tion, such as influenza A HA, only the largest epistatic model,

ESM-1b, can predict the direction of evolution (Table S6), consis-

tent with previous observations that stronger selection promotes

epistatic interactions (Gupta and Adami, 2016; Hayden andWag-

ner, 2012).Moreover, JTT has less consistent predictions of evolu-

tionary direction than the epistatic models when visualizing evo-

velocity (Figure S7), indicating that epistatic models enable

stronger, more consistent evolutionary predictions.

The other control experiments revealed that using evolutionary

information to calculate both embeddings and velocities is

crucial to performance, especially when generalizing across

diverse proteins; for example, diffusion analysis based on unit

velocity, similar to midpoint-rooted phylogenies, places the

root of serpins among the more diverse eukaryotic sequences

(Table S6). Our control experiments also revealed robustness

to missing sequences, even when removing as much as 75%

of the initial landscape (Figure 6; Data S2; STAR Methods). In
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total, these results support our overall design choices, including

landscapes based on neural embeddings and likelihoods based

on a large, epistatic model.
DISCUSSION

Relationship to protein fitness landscapes
Although conceptually inspired by landscape-based evolu-

tionary theory, evo-velocity departs from traditional notions of

a fitness landscape in a few ways. First, although we show that

language model likelihood correlates with the laboratory mea-

surements of mutational effects (Figure 1C), protein ‘‘fitness’’ in

nature is much more complex and dynamic (although we note

that ESM-1b is trained only on diverse, natural sequence varia-

tion, making it more difficult for the model to be biased toward

a single notion of fitness). Second, because we define local tran-

sitions in the evo-velocity landscape as probabilities, the most

probable outgoing edge might still correspond to a negative ve-

locity score (due to lower language model likelihood) (Figures

S8A and S8B). Third, network diffusion is predominately influ-

enced by average-case patterns and can tolerate local inconsis-

tencies in the direction of velocity (for example, due to noise or

occasional decreases in fitness) (Figure S8C). For these reasons,

a sequence with high pseudotime may not correspond to one

with high likelihood or high ‘‘fitness’’ (Figure S8C). Rather, our

study finds that the diffusion pseudotime computed on the land-

scapes of natural protein families is most predictive of evolu-

tionary order.
Limitations of the study
Our study is limited to observed sequences, especially those

deposited in public databases. Because the actual evolutionary

order of these observed sequences is fundamentally unknown,

we instead must rely on known sampling times or taxonomic

metadata for orthogonal validation. Our benchmarking experi-

ments also indicate that robust estimates of evolutionary order

require at least a few hundred evolutionarily related sequences.

Using a masked language model to predict mutational effects is

not well defined in the case of insertions or deletions, which we

currently do not consider when computing velocity scores (STAR

Methods). Although this study closely analyzes a diverse set of

proteins, we did not perform a more exhaustive analysis (for

example, across thousands of protein families), which could

reveal outlier examples with potentially interesting evolutionary

histories.
Additional discussion and future directions
Here, we show that large-scale protein language models can

learn evolutionary rules well enough to predict the directionality

of evolution. The sufficiency of a single, large protein language

model to predict the evolutionary dynamics of diverse proteins

implies that there are common rules constraining natural evolu-

tion and that language models can extract these rules from

data. Because ESM-1b is trained on sequence alone, these rules

most likely correspond to intrinsic, fundamental properties of

proteins, such as stability or evolvability. A language model

could also indirectly learn some environmental information that

is encoded within sequence variation (Hie et al., 2021).
Evo-velocity has a number of distinctives with respect to

phylogenetic tree reconstruction. Evo-velocity is especially suit-

able for analyzing large (�1,000 or more) collections of se-

quences. We currently limit our analysis to extant sequences,

rather than artificially reconstructing ancestral sequences,

although these could be incorporated into the analysis as well.

Evo-velocity also admits multiple roots that are better mathe-

matically determined than phylogenetic roots (Kim et al., 2020;

Masuda et al., 2017) (although users can manually specify root

sequences as well). Evo-velocity landscapes can also model

convergent evolution (Figure 2F), in contrast to the divergence

assumption that underlies reconstructing phylogenetic trees.

We also find that evo-velocity provides a helpful notion of un-

certainty in its predictions that is less natural to obtain from stan-

dard phylogenetic methods. For example, evo-velocity reports

multiple roots, indicating evolutionary ambiguity regarding the

oldest sequences or reflecting discontinuous trajectories due

to missing evolutionary ancestors. Similarly, the most robust

ordering relationships are at the level of groups of sequences,

whereas variation in the diffusion pseudotime within a taxonomic

group can reflect the uncertainty of a given ordering prediction.

Our experiments also reveal that more complex epistatic

models improve both predictive performance and generality

(Figure 6), especially for proteins (such as influenza A HA) under-

going strong selection. These findings raise a number of inter-

esting questions, including the degree to which the rules learned

by language models are biologically interpretable, for example,

in terms of thermostability or evolvability (Bloom et al., 2006;

Gong et al., 2013). Another question is whether larger protein

language models, fine-tuning (Luo et al., 2021) or directly using

in-vitro assays to compute velocity scores could improve the

performance, resolution, and interpretability of evo-velocity.

Promisingly, evo-velocity offers a new approach through

which to reevaluate current evolutionary hypotheses. For

example, when evaluating a potential hypothesis of eukaryote-

to-prokaryote HGT among serpins (Irving et al., 2002; Roberts

et al., 2004), evo-velocity instead predicted a more canonical

evolutionary trajectory (Figure 5; Spence et al., 2021). Although

we mostly take a gene-centric approach to evolution (Dawkins,

1976), trajectories could also be integrated across multiple

genes to provide insight into evolution at the level of pathways

(as done for our analysis of glycolytic enzymes), gene modules,

or even whole genomes. This might enable the calibration of

evo-velocity pseudotime to historical or geologic time (which

may have a non-linear relationship), providing an additional

method for dating evolutionary events. Evo-velocity also sug-

gests a way to predict future evolution and to design novel pro-

tein sequences.
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A.J., Michels, P.A., Concepción, J.L., and Quiñones, W. (2020).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Sequences, models, and metadata This study https://doi.org/10.5281/zenodo.5590361

UniRef50 (Suzek et al., 2007) https://www.uniprot.org/help/uniref

Immune Epitope Database (Vita et al., 2015) https://www.iedb.org/

NIAID Influenza Research Database (Zhang et al., 2017) https://www.fludb.org/

Los Alamos National Laboratory

HIV Database

N/A https://www.hiv.lanl.gov/

UniProt (UniProt Consortium, 2019) https://www.uniprot.org/

Software and algorithms

Code and scripts This study https://github.com/brianhie/evolocity and

https://doi.org/10.5281/zenodo.5544302

ESM-1b (Rives et al., 2021) https://github.com/facebookresearch/esm

TAPE (Rao et al., 2019) https://github.com/songlab-cal/tape

Scanpy version 1.6.1 (Wolf et al., 2018) https://scanpy.readthedocs.io/

scVelo version 0.2.2 (Bergen et al., 2020) https://scvelo.readthedocs.io/

PhyML version 3.3.20200621 (Guindon et al., 2010) https://github.com/stephaneguindon/phyml

NumPy version 1.17.2 (Harris et al., 2020) https://numpy.org/

iTOL (Letunic and Bork, 2019) https://itol.embl.de/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Brian L. Hie

(brianhie@stanford.edu).

Materials availability
No new materials were generated in this study.

Data and code availability
All data used in our analysis has been deposited to Zenodo and are publicly available as of the date of publication. DOIs are listed in

the key resources table. All original code used in our analysis has been deposited to Zenodo and is publicly available as of the date of

publication. DOIs are listed in the key resources table. Our code and links to data are also available on GitHub at https://github.com/

brianhie/evolocity. Any additional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

METHOD DETAILS

Deep mutational scan benchmarking
We obtained DMS values, all involving single-residue substitutions, and the corresponding DeepSequence (Riesselman et al., 2018)

mutational effect predictions from Livesey and Marsh (2020). To compute mutational effect predictions for ESM-1b and TAPE, we

used the evo-velocity score between the wildtype and mutant sequence as described above. As done by Livesey and March, we

evaluated the performance of the mutational effect prediction as the absolute value of the Spearman correlation between the algo-

rithm’s predicted mutational effect and the value reported by the original DMS study, restricting only to mutants considered by the

original DMS studies. We used all DMS studies from Livesey andMarsh for which there were DeepSequence results available. When

DMS studies performedmultiple types or degrees of selection, we computed the correlation between language model likelihood and

observed variant effects for each instance.
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Influenza A NP evo-velocity analysis
We obtained 3,304 unique NP sequences from the NIAID Influenza Research Database (https://www.fludb.org) (Zhang et al., 2017).

We restricted our analysis to sequences that were sampled from human hosts. Metadata included the year the sequences were

sampled and the influenza subtype of the original virus. We performed KNN graph construction, evo-velocity computation, root pre-

diction, diffusion pseudotime estimation, and UMAP velocity projection as described previously.

We obtained an ordered phylogenetic path from Gong et al. (2013) of H3N2-subtype NP evolution from 1968 to 2007. We

computed the ESM-1b evo-velocity score comparing adjacent sequences along this path and plotted the cumulative sum of these

scores versus the order in the path (Figure 2D). We also compared the improvement in evo-velocity of this path to that of simulated

paths. To simulate paths across our evo-velocity landscape, we began at the same starting sequence, used the same number of

steps as the path of Gong et al., and only considered paths that ended in the same cluster of sequences as the end sequence of

Gong et al.’s path. We used the transition matrix Q to define the probability of moving from node to node and we performed

30,000 random walks.

We obtained a phylogenetic tree of all NP sequences considered in the evo-velocity analysis by first aligning sequences with

MAFFT followed by approximate maximum-likelihood tree construction using FastTree version 2.1 using a JTT+CAT model. The

midpoint-rooted tree was visualized using the iTOL web tool (https://itol.embl.de/) (Letunic and Bork, 2019).

We also projected evo-velocity into one-hot-encoding space to compute a NjXj-dimensional vector ~va for each sequence as

described previously; we then averaged these vectors across all sequences and inspected the top five mutations with the greatest

magnitude change in the resulting average.We then located thesemutations onto a reference sequence from 1934H1N1NP (UniProt

ID: P03466), for which linear T-cell epitope data is available through the Immune Epitope Database (https://www.iedb.org/) (Vita et al.,

2015). We restricted our consideration to linear epitopes of influenza NP with positive validation in a T-cell assay.

Influenza A HA evo-velocity analysis
We obtained 8,115 unique HA H1 sequences from the NIAID Influenza Research Database (https://www.fludb.org) (Zhang et al.,

2017). We restricted our analysis to sequences that were sampled from human hosts. Metadata included the year the sequences

were sampled and the influenza subtype of the original virus. We performed KNN graph construction, evo-velocity computation,

root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described previously.

HIV-1 Gag evo-velocity analysis
We obtained 18,018 unique Gag sequences from the LANL HIV sequence database (https://www.hiv.lanl.gov). Metadata included

the year the sequences were sampled and the HIV subtype of the original virus. We performed KNN graph construction, evo-velocity

computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described previously. We obtained

four SIVcpz Gag sequences with high-quality, manual annotation from UniProt (https://www.uniprot.org/) (UniProt Consortium,

2019). These sequenceswere obtained fromSIVcpz isolatesMB66 (UniProt ID: Q1A268), EK505 (UniProt ID: Q1A250), TAN1 (UniProt

ID: Q8AII2), and GAB1 (UniProt ID: P17282).

SARS-CoV-2 Spike evo-velocity analysis
Weobtained 75,584 unique, full-length Spike sequences from the August 25, 2021GISAID release (https://www.gisaid.org/) (Shu and

McCauley, 2017). Metadata included the date the sequences were sampled. We performed KNN graph construction, evo-velocity

computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described previously. We deter-

mined the location of clusters corresponding to known variants-of-concern based on known marker mutations including D614G,

N501Y (for B.1.1.7, B.1.351, and P.1), K417N (for B.1.351), P681H (for B.1.1.7), E154K (for B.1.617.1), T478K (for B.1.617.2), and

P681R (for B.1.617.2) (Walensky et al., 2021).

Globins evo-velocity analysis
Weobtained 6,097 globin sequences fromUniProt. We restricted our analysis to eukaryotic sequenceswithin the ‘‘globin’’ family and

to sequences between 135 and 155 residues in length, inclusive, which was done based on a clear mode in the distribution of

sequence lengths and was meant to preserve mostly homologous sequences in our analysis. Metadata included the taxonomic

lineage of each sequence and, for some of the sequences, annotations indicating the type of globin. We performed KNN graph con-

struction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described

previously. We obtained the rooted phylogenetic tree of globins and the inferred ancestral sequences from Pillai et al. (2020).

Cytochrome c evo-velocity analysis
We obtained 2,128 cytochrome c sequences from UniProt. We restricted our analysis to eukaryotic sequences within the ‘‘cyto-

chrome c’’ family and to sequences between 100 and 115 residues in length, inclusive, which was done based on a clear mode in

the distribution of sequence lengths and was meant to preserve mostly homologous sequences in our analysis. Metadata included

the taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity computation, root prediction, diffu-

sion pseudotime estimation, and UMAP velocity projection as described previously. We obtained the approximate dates and

geologic eons of the emergences of different organisms from Hedges et al. (2015).
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Enolase evo-velocity analysis
We obtained 31,901 enolase sequences from UniProt. We restricted our analysis to sequences within the ‘‘enolase’’ family and to

sequences between 412 and 448 residues in length, inclusive, which was done based on a clear mode in the distribution of sequence

lengths and wasmeant to preserve mostly homologous sequences in our analysis. Metadata included the taxonomic lineage of each

sequence. We performed KNN graph construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and

UMAP velocity projection as described previously.

We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt sequences with high-quality, manual

annotation. We then performed a multiple sequence alignment with MAFFT and performed phylogenetic reconstruction on the align-

ment with PhyML version 3.3.20200621 using a JTTmodel with gamma-distributed among-site rate variation and empirical state fre-

quencies (Guindon et al., 2010). The unrooted tree was visualized using the iTOL web tool.

PGK evo-velocity analysis
We obtained 30,455 PGK sequences from UniProt. We restricted our analysis to sequences within the ‘‘phosphoglycerate kinase’’

family and to sequences between 385 and 420 residues in length, inclusive, which was done based on a clear mode in the distribution

of sequence lengths and was meant to preserve mostly homologous sequences in our analysis. Metadata included the taxonomic

lineage of each sequence. We performed KNN graph construction, evo-velocity computation, root prediction, diffusion pseudotime

estimation, and UMAP velocity projection as described previously.

We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt sequences with high-quality, manual

annotation. We then performed a multiple sequence alignment with MAFFT and performed phylogenetic reconstruction on the align-

ment with PhyML using a JTTmodel with gamma-distributed among-site rate variation and empirical state frequencies. The unrooted

tree was visualized using the iTOL web tool.

Serpins evo-velocity analysis
We obtained 22,737 serpin sequences from UniProt. We restricted our analysis to sequences within the ‘‘serpin’’ family and to se-

quences between 300 and 525 residues in length, inclusive, which was done based on a clear mode in the distribution of sequence

lengths and wasmeant to preserve mostly homologous sequences in our analysis. Metadata included the taxonomic lineage of each

sequence. We performed KNN graph construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and

UMAP velocity projection as described previously.

We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt sequences with high-quality, manual

annotation. We then performed a multiple sequence alignment with MAFFT and performed phylogenetic reconstruction on the align-

ment with PhyML using a JTTmodel with gamma-distributed among-site rate variation and empirical state frequencies. The unrooted

tree was visualized using the iTOL web tool.

Evo-velocity benchmarking metrics
We performed control experiments to test howmodifying different components of our evo-velocity implementation affected the abil-

ity of diffusion pseudotime to predict the directionality of evolution. For proteins with largely continuous evolution and with known

sampling date (i.e., influenza A NP, influenza A HA, and SARS-CoV-2 Spike), we computed the Spearman correlation between sam-

pling date and pseudotime. For cytochrome c, we tested the ability to predict taxonomic order, as determined by location in the fossil

record (Figure 4F), by computing the Spearman correlation between pseudotime and the ordinal value of each taxonomic class. For

the remaining proteins, we tested the ability for pseudotime to separate categorical taxonomic classes according to their known

evolutionary order; to quantify this separation, we use the area under the receiver-operating characteristic curve (AUROC) where

we assign 0 to the first class and 1 to the second class. For HIV-1 Gag, we used the combined subtypes B and C as the first class

and circulating recombinant form BC as the second class. For globins, we used neuroglobin as the first class and Hbb as the second

class. For serpins, we used prokaryota as the first class and eukaryota as the second class. For enolase and PGK, we used archaea

as the first class and eukaryota as the second class.

UniRef50 sequence similarity computational control
Wewanted to quantify if our evo-velocity results, including evo-velocity pseudotime, could be explained by sequence similarity to the

training set. We obtained this training set from ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2018_03/

uniref/. We identified representative sequences in UniRef50 by searching for the literal presence of the sequence within UniRef50

or by mapping the protein accession information to UniProt IDs, if available, and then mapping the UniProt IDs to the corresponding

UniRef50 cluster representative. Then, for each sequence in our evo-velocity analysis, we computed the sequence similarity score to

each representative sequence in UniRef50 and took the maximum of these scores. To compute the sequence similarity score, we

used the similarity ratio implemented by the fuzzywuzzy Python package version 0.18.0, which is based on the Levenshtein distance

between two sequences and is normalized to take values between 0% and 100%, inclusive.

To perform the control experiment, we filtered out sequences with 80% or less sequence similarity to the training set, thereby

excluding sequences that are far from the sequences considered by ESM-1b. We then evaluated the Spearman correlation between

the similarity scores and pseudotime, both in terms of the directionality of the correlation (e.g., a positive correlation indicates that

similarity to UniRef50 could be explaining pseudotime) and also in terms of the change in this correlation compared to the correlation
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obtained on the full set of sequences (Table S3). We also evaluated the ability for the overall pseudotemporal patterns, quantified

using the benchmarking metrics described above, to reproduce those found when analyzing the full set of sequences.

TAPE reproducibility computational control
To see how robust our evo-velocity results were to the language model used to estimate the mutational likelihoods, we obtained the

TAPE transformer model as described above. We performed the evo-velocity analysis by keeping the KNN graph structure the same

as in the ESM-1b analysis but using the evo-velocity scores obtained by the TAPE likelihoods. All other downstream analyses were

also kept the same.

Non-epistatic substitution matrix computational control
We also tested velocity models based on amino-acid substitution matrices, which compute scores without any sequence context or

epistatic information.We obtained three substitutionmatrices: BLOSUM62 (Henikoff andHenikoff, 1992), JTT (Jones et al., 1992) and

WAG (Whelan and Goldman, 2001). Rather than weight edges in the KNN network based on language model pseudolikelihood

scores, we instead use a score based on themean of the substitution matrix-definedmutation scores; more specifically, given a sub-

stitution matrix that outputs a scalar for a given amino acid pair, which we denote as s : X 3 X/R, we compute velocity scores as

v
0
ab def 1

jMj
P
i˛M

s
�
x
ðaÞ
i ; x

ðbÞ
i

�
. All three substitution matrices we consider are symmetric, so v0ab = v0ba (resulting in an undirected,

weighted graph). The rest of the analysis, including softmax-based transition probability computation and subsequent diffusion anal-

ysis, remained the same.

Negative control experiments
Weperformed additional controls meant to assess the value of incorporating evolutionary information into the evo-velocity algorithm.

We also used the same benchmarking metrics described above. To assess the value of a KNN graph based on Euclidean distance in

language model-embedding space, we instead constructed the KNN graph using Hamming distance in one-hot-encoded embed-

ding space, using the same nearest-neighbors implementation provided by Scanpy; we used the same value of k and the same

downstream steps as the original analysis.

To test the value of analysis based on a structured embedding space, we instead treated all pairs of sequences as having unit dis-

tance between them; to construct the KNN graph (while preserving the computationally tractability of downstream analysis), we

broke ties by randomly selecting a set of edges using the same value of k, followed by the same downstream steps as the original

analysis. Pseudotime values for this control experiment were averaged for each sequence across three random seeds and subse-

quently rescaled.

To test the value of ESM-1b pretraining on UniRef50, we instead computed velocity scores using ESM-1b with randomly initialized

weights, followed by all steps taken in the original analysis. Pseudotime values for this control experiment were averaged for each

sequence across three random initializations of ESM-1b and subsequently rescaled.

To test the value of biasing network diffusion analysis with evolutionary information, we instead assigned unit velocity to all edges in

the network, i.e., vab def 1, followed by all steps taken in the original analysis.

Downsampling benchmark experiments
We tested the robustness of evo-velocity to downsampling of the original sequence landscape. We downsampled to 75%, 50%,

25%, or 10% of the original landscape without replacement (the number of samples in each resulting landscape is provided in

Data S2), repeating across three random seeds. Our first experiment sampled sequences with uniform probability across the range

described above. Our second experiment preferentially weighted sequences with the goal of preserving those that aremore recent in

evolutionary time, simulating the higher probability of missing sequences that are early in evolution (though we note that the original

landscapes are most likely already biased to newer sequences). For the landscapes of influenza A NP, influenza A HA, and SARS-

CoV-2 Spike, we weighted sequences by their rank order according to known sampling time, so that later sequences have a higher

weight. For the HIV-1 Gag landscape, we placed unit weight on primary subtypes and double this weight on circulating recombinant

forms. For the globin landscape, we placed unit weight on all globin types except the hemoglobin subunits, on which we placed dou-

ble the unit weight. For the cytochrome c landscape, we placed unit weight on other eukaryota, double the unit weight on viridiplantae

and fungi, and triple the unit weight on arthropoda, chordata, and mammalia. For the landscapes of serpins, enolase, and PGK, we

placed unit weight on archaea, double the unit weight on bacteria, and triple the unit weight on eukaryota. Once weights were placed

on sequences, they were scaled to valid probabilities by normalized the weights to sum to unity across all sequences. We used the

weighted random sampling functionality provided by the NumPy Python package version 1.17.2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Language models
In this paper, we implement evo-velocity with masked language models, which are trained by masking certain residues in the input

and predicting these residues in the output. For a sequence x˛XN, where X is the set of amino acids and N is the sequence length,

the masked language modeling objective implicitly models a distribution over sequences through conditional likelihoods
Cell Systems 13, 274–285.e1–e6, April 20, 2022 e4
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pðxi
��x½N� figÞ where x½N� fig denotes the sequence without the residue at position i, sometimes referred to as the sequence context.

Typically, these language models also learn a latent variable zi˛RD by learning a function f : XN�1/RD where zi def f
�
x½N� fig

�
such that pðxi

��x½N� fig;ziÞ = pðxijziÞ.
We use two large-scale language models trained with a masked objective. We used the ESM-1b model (Rives et al., 2021) (ob-

tained from https://github.com/facebookresearch/esm) trained on the March 2018 release of UniRef50 (Suzek et al., 2007). We

also used the TAPE transformer model (Rao et al., 2019) (obtained from https://github.com/songlab-cal/tape) trained on the Pfam

database release 32.0 (El-Gebali et al., 2019). Unless otherwise stated, we used ESM-1b as the default model for our experiments.

Evo-velocity score computation
We compute an evo-velocity score that compares two sequences xðaÞ and xðbÞ as

vab def
1

jMj
X
i˛M

h
log p

�
x
ðbÞ
i

���zðaÞi

�
� log p

�
x
ðaÞ
i

���zðbÞi

� i
;

where Mdeffi : x
ðaÞ
i sx

ðbÞ
i g is the set of positions at which the amino acid residues disagree. We designed the evo-velocity score

based on masked-language-model pseudolikelihoods (Hsu et al., 2022) to efficiently approximate the change in likelihood of

mutating sequence xðaÞ to xðbÞ and vice versa. The evo-velocity score is positive if moving from xðaÞ to xðbÞ is more favorable, negative

if moving from xðbÞ to xðaÞ is more favorable (so that vab = � vba), and zero if they are equal.

In practice, xðaÞ and xðbÞ can disagree in length, so we first perform a global pairwise sequence alignment using the pairwise2 mod-

ule in the Biopython Python package version 1.76 with a uniform substitution matrix and alignment parameters meant to discourage

the introduction of sequence gaps (following the Biopython recommendations, we use amatch score of 5, amismatch penalty of -4, a

gap-open penalty of -4, and a gap-extension penalty of -0.1). We ignore positions involving alignment gaps when computing the evo-

velocity score, i.e., the evo-velocity score is only based on substitutions, since modeling the effect of an insertion or a deletion is less

well defined when using a masked language model to predict mutations. We do not include gap characters when computing lan-

guage model likelihoods.

Constructing the sequence similarity network and evo-velocity transition matrix
To construct the sequence similarity network, we first use the language model to obtain a sequence embedding zðaÞ def 1

N

PN
i =1z

ðaÞ
i

for each sequence xðaÞ in the set of sequences-of-interest (for example, proteins within the same family) of sizeM. We use ESM-1b to

compute the embeddings for each sequence as the 1,280-dimensional output of the last (i.e., the 33rd) hidden layer of the lan-

guage model.

We then construct a directed graphwhere each node corresponds to a sequence andwe connect a node to its k-nearest neighbors

based on the Euclidean distance in the language model embedding space in RD. We can then use the evo-velocity scores and the

KNN graph to construct a transition matrix Q˛RM3M, where

qab def
expðvabÞP

b0˛NðxaÞexpðvab0 Þ

is the entry in the ath row and bth column of Q andNð ,Þ denotes the set of the neighbors in the KNN graph. Note that
P

b˛½M�
qab = 1.

In all our experiments, we use the embedding function learned by the ESM-1b language model. To construct the KNN graph, we

use the functionality provided by the Scanpy Python package version 1.6.1 (Wolf et al., 2018). In practice, higher values of k result in

smoother, less noisy landscapes at the cost of higher computational effort. We find that values of k around 30 to 50 (our package

defaults to 50) provide a good balance between robustness to noise and computational efficiency (though analyses involving less

sequences overall or more homogeneous sequences can also tolerate lower values of k to speed up analysis); the 30-50 range

has also shown good empirical performance in other KNN-based analyses that require robust estimation of the biological landscape

(Narayan et al., 2021). In this paper, we use the values k = 30 for our cytochrome c and Spike experiments, k = 40 for our NP and Gag

experiments, and k = 50 for our HA, globin, enolase, PGK, and serpin experiments. In general, we find that lower values of k are suf-

ficient for densely-sampled landscapes or shorter timescales, whereas larger values of k are required for more sparsely-sampled

landscapes over longer timescales.

Network diffusion analysis and predicting roots
To find the root nodes, we can use the fixed points of a diffusion process based on the transition matrix Q (Bergen et al., 2020; Ma-

suda et al., 2017). Given a diffusion probability vector mðtÞ, we can find roots by running a diffusion process until a fixed point, i.e.,

mðNÞ =QT
mðNÞ (note that we take the transpose of the transition matrix to ‘‘reverse’’ the diffusion process, since our goal is to find

the root nodes). We take the highest values of mðNÞ to identify the root nodes, where we obtain mðNÞ as the eigenvector of QT corre-

sponding to an eigenvalue of 1. By default, we use a cutoff at the 98th percentile of values in mðNÞ to define the set of root nodes, as has

been done previously (Bergen et al., 2020). We assume Q corresponds to a strongly connected directed graph, which is true if the

KNN graph consists of a single connected component (and which was true for all of our analyses), since each undirected edge in the

original KNN graph leads to two directed edges in the velocity graph; if the graph is strongly connected, then there is a unique value of
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mðNÞ (Masuda et al., 2017). We scale the final values of the diffusion vector mðNÞ to take values between 0 and 1, inclusive, and use the

diffusion-based root estimation procedure implemented by the scVelo Python package version 0.2.2 (Bergen et al., 2020).

Diffusion pseudotime computation
We use diffusion pseudotime (DPT) to order sequences in evolutionary time. DPT is described in detail by Haghverdi et al. (2016) and

is closely related to the geodesic distance between two nodes in a graph. As done by Haghverdi et al., we denote the DPT score

between a root node xðrootÞ and a node x as dptðxðrootÞ;xÞ, which takes scaled values between 0 and 1, inclusive. We use the graph

encoded by the transition matrixQ. Since the root-prediction analysis described above can yield potentially multiple roots, we define

evo-velocity pseudotime as the average of DPT scores across the set of all root nodes R, i.e.,

pseudotimeðxÞ def 1

jRj
X

xðrootÞ˛R
dpt

�
xðrootÞ; x

�
:

We use the DPT implementation provided by the Scanpy Python package.

Plotting, data visualization, and statistical analysis
We used the UMAP algorithm (McInnes and Healy, 2018) to visualize the KNN graph in two dimensions. All UMAP visualizations were

obtained using the umap-learn Python package version 0.4.6 as wrapped by Scanpy. We generated boxplots using the seaborn Py-

thon package version 0.11.1; in all of our boxplots, the box extends from the first to third quartile, a horizontal line is drawn at the

median, and whiskers extend to 1.5 times the interquartile range. We used the scipy version 1.4.1 Python package to compute cor-

relations and statistical tests. A P value of less than 1 3 10-308 indicates a value that was below the floating-point precision of our

computer.

Embedding transfer
We can project evo-velocity, as encoded by the transition matrix Q, into an arbitrary embedding space (assuming that embeddings

are available for all sequences) as done previously (Bergen et al., 2020). For a sequence xðaÞ and xðbÞ, we denote the respective em-

beddings as zðaÞ and zðbÞ. We then first compute the cosine-normalized translation vector separating sequences connected in the

KNN graph, i.e.,

dab def
zb � za

kzb � zak2
and we obtain the velocity projections as the expected displacement with respect to Q, i.e.,

~va def
X
bsa

�
qab � 1

M

�
dab:

We use twomain interpretable embedding spaces in our downstream analysis. The first is two-dimensional UMAP space, in which

evo-velocity can be visualized as two-dimensional vectors. Once these vectors are computed, we use the streamplot and quiver plot

functionality of the matplotlib Python package version 3.3.3 to visualize evo-velocity. The second interpretable embedding space we

consider is one-hot-encoded sequence space, which we use to identify mutations that are associated with large changes in evo-ve-

locity. To project evo-velocity into sequence space, we first construct a multiple sequence alignment of all M sequences using

MAFFT version 7.475. A sequence x is then embedded into a one-hot-encoded vector ~z˛f0; 1g ~NjXj, where ~N is the length of the align-

ment. The velocity projections take values in R
~NjXj, where we interpret each dimension as corresponding to a given residue in X at a

given site in ½ ~N�.
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